Control Engineering for Mechanical Engineering

Faculty

Faculty of Engineering and Computer Science

Version

Version 1 of 20.02.2026.

Module identifier

11B1800

Module level

Bachelor

Language of instruction

German

ECTS credit points and grading

5.0

Module frequency

only summer term

Duration

1 semester

 

 

Brief description

Control engineering, as a cornerstone of automation technology, deals with the targeted influencing of technical processes by feeding back the actual state of the system and comparing it with the desired state. Control engineering is used in technical systems and products to enable their efficient, safe, and sustainable operation. This module teaches the basic principles and tools in this field. It is closely synchronized with the module "Automation Technology for Mechanical Engineering."

Teaching and learning outcomes

  1. Control engineering concepts (graphical modeling, feedback)
  2. Transfer elements
  3. Mathematical modeling (including linearization)
  4. Experimental modeling (including linearization)
  5. The Laplace transform (possibly at the very beginning to avoid overlap with "Automation Technology for Mechanical Engineering")
  6. Properties and parameters of the closed control loop (quality criteria, stability)
  7. Control loops with PID controllers (graphical design of P controllers, tuning rules for P(I)(D) controllers, compensation controllers/pole placement)
  8. Control loops with discontinuous controllers
  9. Bode diagram (construction, stability according to Nyquist, controller design with lead and lag elements)

Overall workload

The total workload for the module is 150 hours (see also "ECTS credit points and grading").

Teaching and learning methods
Lecturer based learning
Workload hoursType of teachingMedia implementationConcretization
45LecturePresence-
15Laboratory activityPresence-
Lecturer independent learning
Workload hoursType of teachingMedia implementationConcretization
60Preparation/follow-up for course work-
30Exam preparation-
Graded examination
  • Written examination
Ungraded exam
  • Field work / Experimental work
Exam duration and scope

Graded examination:

  • Written examination: see the applicable study regulations.

Ungraded examination:

  • Experimental work: about five practical training sessions

Literature

  • Bode, Helmut (2013): Systeme der Regelungstechnik mit MATLAB und Simulink. Analyse und Simulation. 2., aktualisierte Aufl. München: Oldenbourg-Verl. (Matlab and simulink examples).
  • F?llinger, Otto; D?rrscheidt, Frank (2008): Regelungstechnik. Einführung in die Methoden und ihre Anwendung. 10. durchges. Aufl., Nachdr. der 8., überarb. Aufl. 1994. Heidelberg: Hüthig (Studium).
  • Tr?ster, Fritz (c 2011): Steuerungs- und Regelungstechnik für Ingenieure. 3., überarb. und erw. Aufl. München: Oldenbourg.
  • Wohlfarth, Ulrich; Rau, Martin; Beuschel, Michael; Angermann, Anne (2014): MATLAB - Simulink - Stateflow. Grundlagen, Toolboxen, Beispiele. München.
  • Zacher, Serge; Reuter, Manfred (2014): Regelungstechnik für Ingenieure. Analyse, Simulation und Entwurf von Regelkreisen ; mit 403 Abbildungen, 96 Beispielen und 32 Aufgaben. 14., korrigierte Auflage. Wiesbaden: Springer Vieweg (Lehrbuch).

Applicability in study programs

  • Mechanical Engineering (Bachelor)
    • Mechanical Engineering B.Sc. (01.09.2025)

  • Mechanical Engineering in Practical Networks
    • Mechanical Engineering in Practical Networks B.Sc. (01.03.2026)

  • Automotive Engineering (Bachelor)
    • Automotive Engineering B.Sc. (01.09.2025)

    Person responsible for the module
    • Niemeyer, Philip
    Teachers
    • Niemeyer, Philip
    • Hillbrand, Heinz-Hermann
    • Liebler, Klaus