Mathematics 2 for E/Me

Faculty

Faculty of Engineering and Computer Science

Version

Version 1 of 21.10.2025.

Module identifier

11B2030

Module level

Bachelor

Language of instruction

German

ECTS credit points and grading

5.0

Module frequency

winter and summer term

Duration

1 semester

 

 

Brief description

Tasks in electrical engineering and mechatronics are modeled using mathematical methods. The engineer must create the mathematical models, calculate solutions within the respective model and check the relevance of the solutions for technical practice. Building on the content of Mathematics 1, the lecture will provide an introduction to the mathematical tools required for this. The focus is on an in-depth study of complex numbers, the analysis of several variables and elements of differential equations. The mathematical methods will be demonstrated and practiced using examples from mechatronics and/or electrical engineering.

Teaching and learning outcomes

1. deepening of complex numbers 

2. analysis of several variables   

3. differential equations 

Overall workload

The total workload for the module is 150 hours (see also "ECTS credit points and grading").

Teaching and learning methods
Lecturer based learning
Workload hoursType of teachingMedia implementationConcretization
60LecturePresence or online-
15PracticePresence or online-
Lecturer independent learning
Workload hoursType of teachingMedia implementationConcretization
55Preparation/follow-up for course work-
20Exam preparation-
Graded examination
  • Written examination
Recommended prior knowledge

Mathematics 2 for E/Me

Knowledge Broadening

Students have extended and advanced knowledge of mathematical techniques for modeling and solving their subject-specific problems.

Application and Transfer

Students can apply the methods of complex calculation and multidimensional analysis to subject-specific problems. They understand the description and solution of technical problems using ordinary differential equations. They can assess the relevance and consistency of these solutions for applications in electrical engineering/mechatronics.

Literature

1. A.Fetzer/H. Fr?nkel: Mathematik Lehrbuch für Fachhochschulen Band 1 und Band 2, Springer Verlag

2. L. Papula: Mathematik für Fachhochschulen Band1, Band 2 und Band 3, Vieweg Verlag

3.T. Arens, F. Hettlich, Ch. Karpfinger et al. Mathematik. Spektrum Akademischer Verlag

4. P. Stingl: Mathematik für Fachhochschulen Technik und Informatik. Hanser Verlag

5. D. Schott Ingenieurmathematik mit MATLAB Algebra und Analysis für Ingenieure. Fachbuchverlag Leipzig im Carl Hanser Verlag

6. T. Westermann: Mathematik für Ingenieure mit MAPLE, Band 1 und Band 2. Springer Verlag

7. K. Meyberg/P. Vachenauer: H?here Mathematik, Band 1 und Band 2. Springer Verlag

8. M. Richter: Grundwissen Mathematik für Ingenieure. B.G. Teubner Verlag

9. D. Jordan/P. Smith: Mathematical Techniques An introduction for the engineering, physical, and mathematical sciences. Oxford University Press

Applicability in study programs

  • Electrical Engineering in Practical Networks (dual)
    • Electrical Engineering in Practical Networks (dual) B.Sc. (01.03.2026)

  • Mechatronics
    • Mechatronics B.Sc. (01.09.2025)

  • Bachelor of Vocational Education - Electrical Engineering
    • Bachelor of Vocational Education - Electrical Engineering B.Sc. (01.09.2025)

  • Electrical Engineering
    • Electrical Engineering B.Sc. (01.09.2025)

    Person responsible for the module
    • Gervens, Theodor
    Teachers
    • Ambrozkiewicz, Mikolaj
    • Meyer, Jana
    • Henkel, Oliver
    • Gervens, Theodor
    • Thiesing, Frank