Light Alloys
- Faculty
Faculty of Engineering and Computer Science
- Version
Version 6.0 of 06/15/2022
- Code of Module
11M0570
- Modulename (german)
Light Alloys
- Study Programmes
Angewandte Werkstoffwissenschaften (M.Sc.)
- Level of Module
3
- Mission Statement
Subject of the course "light alloys" are the metallurgical aspects of light-weight design. Due to a shortage in energy resources there is an increasing demand of light-weight materials solutions not only in aerospace but also in automotive industries. The lecture covers the classical light metals aluminium, titanium and magnesium and their alloys as well as light-weight concepts by using steel products. By means of examples from industrial practice it is shown how the application of casting and forging techniques, heat treatment, coating and joining technologies allows to tailor the materials in such a way that they fulfil the technical, economical and ecological requirements of future products.
- Content
- Lecture: ? Light-weight design strategies: (i) application of low-density materials, (ii) topology optimisation, (iii) functionality, (iv) composites / driving forces aerospace and automotive research, criteria of a systematic materials selection process? Overview about light-weight materials: polymers, metals, composites? Recapitulation of metallurgical basics: phase diagrams, damage mechanisms, strengthening mechanisms, etc. ? Casting and metal forming technologies, properties, heat treatment, joining techniques, materials selection using the following light materials choice:
- aluminium alloys (including metal foams)
- titanium alloys (including intermetallic TiAl)
- magnesium alloys? New materials development, future of light alloys
Laboratory Exercises: Metallographic analysis of a typical light-weight product from daily life, chosen and provided by the students themselves or cast (aluminum) using the laboratory induction cating facility – presentation in English language.
- Learning Outcomes
Knowledge Broadening
The students know about the general strategies of light weight design using CFRP metals and alloys. They know about economic and technical advantages and disadvantages by using the various groups of materials.
Knowledge Deepening
With a focus on the three classical light alloys, based on aluminum, titanium and magnesium, the students get a deeper understanding of the metal casting, forming and strengthening technologies. They have a broad knowledge about the variety of possible alloy compositions and the beneficial (and potentially detrimental) effects of the alloying elements.
Instrumental Skills and Competences
By experimental laboratory work in small teams the students are enabled to apply respective methods of metallographic analysis and mechanical testing to characterize selected light weight components and small aluminum cylinders that were produced by means different casting conditions using the induction casting facility at the University of Appl. Sc. Osnabrück.
Communicative Skills and Competences
The students are able to work experimentally and to communicate in small teams. Furthermore, they are able to present the results in the context of the knowledge they gained from the lecture and additional literature.
Systemic Skills and Competences
The students should be able to develop a light-weight concept for any given technical application taking the resp. loading conditions, economical, and environmental constraints into account. Furthermore, they should know how to choose the most suitable processing route with respect to casting, forming, heat treatment, joining, coating and testing.
- Mode of Delivery
lecture / laboratory exercises
- Expected Knowledge and/or Competences
Introduction in Materials Science and Engineering, Mechanics – Elastostatics, Mechanics of Materials
- Responsible of the Module
Mola, Javad
- Lecturer(s)
Mola, Javad
- Credits
5
- Concept of Study and Teaching
Workload Dozentengebunden Std. Workload Lehrtyp 30 lecture 10 laboratory exercises Workload Dozentenungebunden Std. Workload Lehrtyp 20 laboratory exercises 58 preparation/wrap-up phase 30 exam preparation phase 2 written exam (K2)
- Recommended Reading
- Polmear, Ian: Light Alloys, Butterworth Elsevier, Amsterdam 2006
- Schumann, H.; Oettel, H.: Metallografie, Wiley VCH Weinheim 2005
- Ashby, M.: Materials Selection in Engineering Design, Elsevier, Oxford 2005
- Ostermann, F.: Anwendungstechnik Aluminium, 3. Auflage, Springer-Vieweg, Berlin Heidelberg 2014
- Graded Exam
Two-Hour Written Examination
- Examination Requirements
knowledge about the principles of light weight design, Al, Ti, Mg and their alloys: systematic materials and heat treatment selection and , knowledge of casting, rolling, forging, extrusion and joing methods being suitable for light alloys.
- Duration
1 Term
- Module Frequency
Only Winter Term
- Language of Instruction
English