Multistability and soliton modes in nonlinear microwave resonators
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Nonlinear optical cavities are known to exhibit bistability and multistability. In this letter the
properties of microwave Fabry-Perot and ring resonators with second-order dispersive
nonlinearity are analyzed. Experimental results such as multiple-valued output versus input
characteristics, resonance curves, and waveforms are described. On the basis of harmonic and
subharmonic generation a new mechanism is found leading to multistability, which is
quantitatively attributed to well-defined soliton modes propagating in the resonator.

PACS numbers: 42.65. — k, 84.20.Pc, 84.40. — x

Bistable optical devices where nonlinearity and feed-
back lead to two distinct stable states of transmission have
recently attracted much attention.' Besides, systems are now
in consideration exhibiting multistability in case of suffi-
ciently large nonlinearities, leading to more than two stable
states for the same setting of parameters. Marburger and
Felber? derived that a Fabry—Perot resonator with a nonlin-
ear Kerr medium will show a multiple-valued output versus
input intensity characteristic. In case of a ring resonator con-
taining a two-level absorber, Ikeda® predicted a similar be-
havior. To a certain extent, multistability has now been con-
firmed by some experimental situations: Okada and
Takizawa® succeeded in multiple-valued operation using a
hybrid electro-optical device. With the aid of pure intrinsic
optical devices, Miller ez al.® and Eichler® observed a steplike
multistable behavior. Beyond that, Gozzini et al.” investigat-
ed the multistable response of a Fabry—Perot microwave res-
onator excited by several electromagnetic waves. In the pres-
ent paper the multistability of microwave Fabry—Perot and
ring transmission line resonators®® is examined. The second-
order nonlinear material under investigation has the proper-
ties of a Korteweg—de Vries (KdV) system.'©

In a first exemplary experiment the frequency f of the
sinusoidal input signal corresponds to the fifth natural mode
of the resonator (VN = 5). As a first result, the transmission
curve in Fig. 1 exhibits multistability with six clearly differ-
ent states of output power. A further inspection, however,
reveals that two of them consist of two different, barely sepa-
rated states. As a result of this “‘degeneracy,” one can ulti-
mately distinguish between eight different states of transmis-
sion, and by supplying a fixed input power, the output power
may achieve up to six values in the present case.

In order to examine the behavior of the resonator in
detail, in a second step the spectrum of the transmitted wave
has been analyzed. At relatively low input powers the ob-
served spectrum can essentially be determined by the gener-
ated second harmonic (cf. branch No. I in Fig. 1}. On in-
creasing the input power, successive jumps into higher
transmission branches occur where in addition to the har-
monics nf (n natural number), subharmonics nf/N are also
generated.'' Thus, in the present case the spectrum is com-
pletely described by Fourier components that are multiples
of f/5 up to the cut-off frequency of the material. However, it
turns out to be difficult to distingush between the different
observable states by means of the individual Fourier compo-
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nents only. Nevertheless, a more physical concept can be
introduced as follows allowing a much better description of
the background of multistability. For that purpose from here
on we consider the temporal profile of the wave propagating
in the resonator. In order to exclude additional spatial phe-
nomena within the Fabry—Perot and to illustrate the idea the
following discussion is restricted to typical measurements
performed on the ring resonator.

From the theoretical viewpoint, in our device the sta-
tionary periodic and soliton solutions of the KdV equation
are known to be of remarkable importance.”'%!? Moreover,
regarding the impressed boundary conditions of the resona-
tor, the behavior of such a device can be attributed to a model
as described in Ref. 13 where solitons interact with the har-
monic pump wave synchronously moving in the same direc-
tion.

As an experimental example a particular waveform is
illustrated in Fig. 2(a).'* As can be seen the first of five per-
10ds of the pump contains a single pulse which reveals tobe a
KdV soliton. This soliton is parametrically generated by and
superimposed upon the sinusoidal pump wave. Since the en-
tire period is five times that of the pump just one soliton is
moving in the ring. Thus this mode can be characterized by
the bit pattern (10000). Another branch of the transfer curve
is characterized by the waveform of Fig. 2(b). Now three
solitons are propagating in the ring. The arrangement corre-
sponds to (11010). To complete the description, Table I lists
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FIG. 1. Multistability; experimental dependence of the transmitted power
on the power incident on the Fabry-Perot resonator. f~S5 f,, where
f, = 14.1 MHz denotes the fundamental eigenfrequency.
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FIG. 2. Stationary waveform as measured in the ring resonator with ¥V = 5.
The fundamental period is V /f which equals one round trip time. The peri-
od of the pump is 1/f. (a) State No. 2; [b) State No. 6, cf. Figs. | and 3 and
Table 1.

the eight sequences of all observed states in case N=5.
From Table I one also concludes that the above degeneracy
of states (cf. Fig. 1) is due to the same number of solitons but
with different arrangements {(modes 3 and 4, 5, and 6). In
general, if N denotes the number of possible resonator
modes, a soliton may be in any of N discrete positions rela-
tive to a reference period which is /' times that of the pump.
With respect to the periodicity of the problem and applying
methods from combinatorial analysis and number theory
the maximal number A of states can be calculated in the
following manner. If d represents the set of all natural divi-
sors of N and ¢ in turn that of d, then A can be written as

A=y £ (n
= d
where
F(d)= Yulg) 2" (2)

is the Mobius inversion formula.'* If r is the number of prime
factors decomposing g, then the Mobius function u(g) is de-
fined as follows: u(1) =1, u(g> 1) =(— 1) provided that
the prime decomposition is square-free, and u(g) = O other-
wise. Taking an example, N = 8 yieldsd = 1; 2; 4; 8 and the
corresponding  values of g are given by
1;1,2;1,2,4; 1,2, 4,8 The values g =1, 2, 4, 8 result in
u=1, —1,0,0. Thus one obtains A4 (8) = 36; by setting
N = 20 there are already 52 488 distinct states. Experimen-
tally the formula has been verified up to N = 8.

TABLE I Soliton modes: arrangement of solitons relative to the pump
(N = §; fifth natural mode of the resonator). Each column corresponds to
five periods of the pump. The state “one soliton™ is marked by "1, the state
“no soliton” is marked by "'0.”

Mode

Pump

period 1 2 3 4 S 6 7 8
Ist 0 I ! 1 1 1 1 1
2nd 0 0 1 0 1 ! 1 1
3rd 0O 0 ©0 1 I 0 1 1
4th o 0 o 0 0 1 1 1
Sth o 0 o0 O o0 0 o0 1
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FIG. 3. Nonlinear resonance curve of the ring resonator, input power is
0.325 mW. The inset displays the wave profile wihtin the state as marked by
an arrow.

Finally, we demonstrate in Fig. 3 that the nonlinear
resonance curves also exhibit a distinct multistable behavior.
Here the hysteresis cycles and states of transmission within
the higher frequency range {f > 111 MHz) are equivalent to
those of the transfer curve in Fig. 1. The corresponding
waveforms are those listed in Table I. Moreover, additional
hysteresis cycles can be discovered at lower frequencies
(f <111 MHz). The typical features of the propagating
waves belonging to this frequency domain can be judged
from the inset of Fig. 3. As a result, parts of the series consist
of single solitons per period of the pump, but there are also
definite positions with two pulses per period. On the other
side, this observation can be traced back to a pronounced
resonant behavior of the generated second harmonic, which
gets a large amplitude and in turn produces extra resonances
by nonlinear interactions, cf. Ref. 8. Namely, due to the nor-
mal dispersion of the transmission line, in the nonlinear sys-
tem the second harmonic is in resonance at pump frequen-
cies which are smaller than the resonance frequency ( in the
linear regime this behavior implies that the resonance fre-
quency in case of N = 10is smaller than twice thatof ¥V = 5).

In conclusion, we have shown that multistability can be
observed by using Fabry—Perot and ring resonators with a
second-order dispersive nonlinearity where in contrast to
the field of nonlinear optics multistability occurs in the vicin-
ity to a single resonance. Thus, this mechanism permits mul-
tistable operations without the enormous input powers nec-
essary in the optical case to switch into higher states.
Together, it should be mentioned that the transfer curves
display not only a steplike behavior, but also a “‘real” multis-
tability at specified settings of all parameters of the input
wave.
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