H?here Finite Elemente Methoden

Fakult?t

Ingenieurwissenschaften und Informatik

Version

Version 10.0 vom 02.10.2019

Modulkennung

11M1140

Modulname (englisch)

Advanced Finite Element Methods

Studieng?nge mit diesem Modul
  • Entwicklung und Produktion (M.Sc.)
  • Fahrzeugtechnik (Master) (M.Sc.)
  • Mechatronic Systems Engineering (M.Sc.)
  • Informatik - Verteilte und Mobile Anwendungen (M.Sc.)
Niveaustufe

4

Kurzbeschreibung

Die Finite Elemente Methode (FEM) hat sich seit vielen Jahren im Ingenieurwesen bew?hrt und wird mittlerweile routinem??ig für Berechnungsaufgaben im Maschinen-, Apparate- und Fahrzeugbau eingesetzt. Die st?ndig steigenden Anforderungen hinsichtlich einer Gewichtsreduzierung aufgrund von Rohstoffknappheit und Vorgaben zur Energieeinsparung haben dazu geführt, dass die Tragreserven von Konstruktionen immer st?rker ausgenutzt werden. Eine weitere Bauteiloptimierung erfordert h?ufig die Berücksichtigung von physikalischen Nichtlinearit?ten und dynamischen Effekten. Aufbauend auf den grundlegenden Verfahren der FEM für lineare Probleme werden im Rahmen dieses Moduls die wesentlichen Ph?nomene der nichtlinearen Statik und der linearen Dynamik sowie deren Umsetzung in der FEM behandelt und an praktischen Beispielen verdeutlicht. Nach erfolgreichem Abschluss des Moduls k?nnen Studierende erkennen, ob nichtlieare oder dynamische Ph?nomene in der Modellbildung der FEM berücksichtigt werden müssen und diese in FEM-Modelle implementieren. Sie sind in der Lage, M?glichkeiten und Grenzen der Methode zu erkennen.

Lehrinhalte
  • 1. Einführung in die FEM
  • 2. Nichtlineare Methoden der FEM
  • 2.1. Nichtlineare Randbedingungen
  • 2.2. Geometrische Nichtlinearit?t
  • 2.3. Materialnichtlinearit?t
    2.4 L?sungsverfahren für nichtlineare Gleichungssysteme
  • 3. FEM in der Dynamik
    3.1 Mechanische Grundlagen
    3.2 Modalanalyse
    3.3 Einführung in die Berechnung mit dynamischen Lasten
Lernergebnisse / Kompetenzziele

Wissensverbreiterung
Die Studierenden, die dieses Modul erfolgreich studiert haben, besitzen fundiertes Wissen über die theoretischen Zusammenh?nge der Finite Elemente Methode und verfügen über praktische Erfahrungen im Umgang mit einer g?ngigen FEM-Software.
Sie k?nnen technische Aufgabenstellungen in ein Modell überführen und dabei nichtlineare und dynamische Ph?nomene bei Bedarf berücksichtigen.
Wissensvertiefung
Die Studierenden erlangen ein tiefergehendes Verst?ndnis der FEM. Sie sind in der
Lage den Einfluss von nichtlinearen und dynamischen Ph?nomen richtig einzusch?tzen.
Im Rahmen einer Kleingruppenarbeit lernen die Studierenden, eine praxisnahe Aufgabenstellung im Bereich der Bauteilsimulation unter Berücksichtigung komplexer physikalischer Zusammenh?nge zu bearbeiten. Dabei werden in Teilen neue methodische Ans?tze erarbeitet. Es werden selbst?ndig L?sungsans?tze für auftretende technische Probleme gefunden.
K?nnen - instrumentale Kompetenz
Die Studierenden beherrschen die Durchführung von nichtlinearen FEM-Analysen in einem üblichen Softwarepaket unter Berücksichtigung von Materialnichtlinearit?ten, geometrischen Nichtlinearit?ten und nichtlinearen Randbedingungen. Sie sind mit dem Ablauf von Verfahren zur L?sung nichtlinearer Gleichungssysteme vertraut.
Sie sind in der Lage, das Eigenschwingverhalten von Baugruppen zu analysieren und zu bewerten.
K?nnen - kommunikative Kompetenz
Studierende k?nnen in kleinen Teams L?sungen erarbeiten und die Ergebnisse schriftlich und mündlich gegenüber anderen Studierenden und Experten kommunizieren.
K?nnen - systemische Kompetenz
Neben den fachlichen Kenntnissen erfordert die Gruppenarbeit Kenntnisse und Fertigkeiten im Bereich Projektmanagement und Teamorgansisation. Die Arbeitsinhalte müssen zeitlich und inhaltlich geplant und den jeweiligen Teammitgliedern zugeordnet werden. Es werden damit die Grundlagen gelegt, um zukünftig an Teilaspekten von Forschungsprojekten zu arbeiten.

Lehr-/Lernmethoden

VorlesungLaborpraktikumHausarbeit

Empfohlene Vorkenntnisse

H?here MathematikH?here Mechanik

Modulpromotor

Schmehmann, Alexander

Lehrende
  • Schmehmann, Alexander
  • Forstmann, Jochen
  • Richter, Christoph Hermann
Leistungspunkte

5

Lehr-/Lernkonzept
Workload Dozentengebunden
Std. WorkloadLehrtyp
30Vorlesungen
15Labore
Workload Dozentenungebunden
Std. WorkloadLehrtyp
30Veranstaltungsvor-/-nachbereitung
60Hausarbeiten
15Literaturstudium
Literatur

Bathe, Klaus-Jürgen: Finite-Elemente-Methoden, Springer VerlagZienkiewicz O.C. and Tayler R.L. : The Finite Element Method, McGraw-Hill Book CompanyHinton E. and Owen D.R.J : An Introduction To Finite Element Computations, Pineridge Press LTDKlein Bernd: FEM, Vieweg VerlagMüller G. und Groth C. : FEM für Praktiker; expert VerlagStelzmann U., Groth C. und Müller G. : FEM für Praktiker, Band 2: Strukturdynamik; expert VerlagWriggers P.: Nichtlineare Finite-Elemente-Methoden

Prüfungsleistung

Hausarbeit

Bemerkung zur Prüfungsform

Hausarbeit mit Rücksprache beim Dozenten

Prüfungsanforderungen

Vertiefte Kenntnisse der mathematischen Modelle der linearen und nichtlinearen Strukturmechanik und der Methoden zur numerischen L?sung von Problemen in der Strukturmechanik. Kenntnisse des Aufbaus und der Funktionsweise der benutzten Software. Fertigkeiten bei der Bearbeitung komplexer Aufgaben.

Dauer

1 Semester

Angebotsfrequenz

Wintersemester und Sommersemester

Lehrsprache

Deutsch