Applied Data Research
- Fakult?t
Fakult?t Wirtschafts- und Sozialwissenschaften (WiSo)
- Version
Version 1 vom 17.12.2024.
- Modulkennung
22B1835
- Niveaustufe
Bachelor
- Unterrichtssprache
Englisch
- ECTS-Leistungspunkte und Benotung
5.0
- H?ufigkeit des Angebots des Moduls
Winter- und Sommersemester
- Dauer des Moduls
1 Semester
- Kurzbeschreibung
The amount of existing and newly generated data in the world is increasing at an unprecedented rate. This growth poses an opportunity for businesses and organisations to derive meaningful insights and trigger the change that creates value and competitive advantage.
Applied Data Research provides a thorough grounding in concepts related to (automated) data collection, screening, processing, analysing, quantifying, visualising and interpreting. The course introduces some of the advanced qualitative and quantitative methods used in research studies. It combines software-aided data analysis with decision-making training, thus providing students with a better understanding of the insights provided by data.
- Lehr-Lerninhalte
1. Introduction to appropriate software
2. Qualitative research methods
3. Quantitative research methods
4. Automated data collection
5. Presentation of results and storytelling
6. Planning and conducting a small study involving qualitative and quantitative methods
- Gesamtarbeitsaufwand
Der Arbeitsaufwand für das Modul umfasst insgesamt 150 Stunden (siehe auch "ECTS-Leistungspunkte und Benotung").
- Lehr- und Lernformen
Dozentengebundenes Lernen Std. Workload Lehrtyp Mediale Umsetzung Konkretisierung 30 Vorlesung Pr?senz - 30 ?bung Pr?senz oder Online - Dozentenungebundenes Lernen Std. Workload Lehrtyp Mediale Umsetzung Konkretisierung 20 Veranstaltungsvor- und -nachbereitung - 50 Arbeit in Kleingruppen - 20 Prüfungsvorbereitung -
- Benotete Prüfungsleistung
- Portfolio-Prüfungsleistung oder
- Portfolio-Prüfungsleistung oder
- Hausarbeit
- Bemerkung zur Prüfungsart
PFP 1: Homework (50 points) + written Project report (50 points)
PFP 2: Homework (50 points) + 1h Exam (50 points)
- Prüfungsdauer und Prüfungsumfang
Homework: approx. 10-15 pages
PFP 1
- Homework (written paper): approx. 10 pages
- Written project report: approx. 10 pages
PFP 2
- Homework (written paper): approx. 10 pages
- Written examination: in accordance with the valid study regulations
The requirements are specified in the respective lectures.
- Empfohlene Vorkenntnisse
Statistics
- Wissensverbreiterung
Students distinguish qualitative from quantitative methods, and are able to select appropriate methods for a given research question. They can explain and illustrate the underlying ideas of specific methods and their principal areas of application.
- Wissensvertiefung
Students can justify the method selection regarding automated collection, screening, processing, analysing, quantifying, interpreting and visualising different kinds of data (e.g., reviews, tweets, forum postings, images, and quantitative data). In addition, they are able to demonstrate deeper pattern discovery skills using various techniques and tools applied to the collected data.
- Wissensverst?ndnis
Students are able to critically reflect on the utility, strengths and limitations of the selected methodology within real-world case studies.
- Nutzung und Transfer
Students are able to transfer their knowledge to real-world case studies including the use of appropriate statistical software.
- Wissenschaftliche Innovation
Students are able to diagnose and address questions using data, extract key outcomes, summarise results and implications, produce recommendations and support data-driven decision-making.
- Kommunikation und Kooperation
Students are able to manage their goals and roles within the group. They can effectively collaborate, plan, organise, prioritise, present, visualise and communicate the analysis outcomes in oral presentations and in comprehensible written reports.
- Wissenschaftliches Selbstverst?ndnis / Professionalit?t
Students are able to critically reflect, question, and communicate the utility and limitations of the applied methods. They are aware of data protection issues and ensure ethical data collection.
- Literatur
Computer Age Statistical Inference by Efron & Hastie, Cambridge, 2016
An Introduction to Statistical Learning with Applications in R by Gareth, Witten, Hastie & Tibshirani, Springer, New York, 2013
Intro to Python for Computer Science and Data Science: Learning to Program with AI, Big Data and The Cloud by Deitel & Deitel, Pearson, 2021
- Zusammenhang mit anderen Modulen
This module prepares students for applied data research in any subject area.
- Verwendbarkeit nach Studieng?ngen
- International Management
- International Management, B.A. (01.09.2024)
- Modulpromotor*in
- Markovic-Bredthauer, Danijela
- Lehrende
- Markovic-Bredthauer, Danijela